目录
1. 相关配置和说明2. 常用数据类型3. 常用数据类型的建立4. 常用数据类型元素访问5. 成员函数6. 语法糖6.1 算术和逻辑运算符6.2. 常用函数7. STL7.1. 迭代器7.2. 算法7.3. 数据结构7.3.1. Vectors7.3.2. Sets7.3.3. Maps8. 与R环境的互动9. 用Rcpp创建R包10. 输入和输出示例如何传递数组通过.attr("dim")设置维数函数返回一维STL vector函数返回二维STL vector返回Armadillo matrix, Cube 或 field参考文献:
1. 相关配置和说明
由于Dirk的书Seamless R and C++ Integration with Rcpp是13年出版的,当时Rcpp Attributes这一特性还没有被CRAN批准,所以当时调用和编写Rcpp函数还比较繁琐。Rcpp Attributes(2016)极大简化了这一过程(“provides an even more direct connection between C++ and R”),保留了内联函数,并提供了sourceCpp函数用于调用外部的.cpp文件。换句话说,我们可以将某C++函数存在某个.cpp文件中,再从R脚本文件中,像使用source一样,通过sourceCpp来调用此C++函数。
例如,在R脚本文件中,我们希望调用名叫test.cpp文件中的函数,我们可以采用如下操作:
library(Rcpp)
Sys.setenv("PKG_CXXFLAGS"="-std=c++11")
sourceCpp("test.cpp")
其中第二行的意思是使用C++11的标准来编译文件。
在test.cpp文件中, 头文件使用Rcpp.h,需要输出到R中的函数放置在//[[Rcpp::export]]之后。如果要输出到R中的函数需要调用其他C++函数,可以将这些需要调用的函数放在//[[Rcpp::export]]之前。
#include <Rcpp.h>
using namespace Rcpp;
//[[Rcpp::export]]
为进行代数计算,Rcpp提供了RcppArmadillo和RcppEigen。如果要使用此包,需要在函数文件开头注明依赖关系,例如// [[Rcpp::depends(RcppArmadillo)]],并载入相关头文件:
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
#include <Rcpp.h>
using namespace Rcpp;
using namespace arma;
// [[Rcpp::export]]
C++的基本知识可以参见此处。
2. 常用数据类型
关键字 描述
int/double/bool/String/auto 整数型/数值型/布尔值/字符型/自动识别(C++11)
IntegerVector 整型向量
NumericVector 数值型向量(元素的类型为double)
ComplexVector 复数向量 Not Sure
LogicalVector 逻辑型向量; R的逻辑型变量可以取三种值:TRUE, FALSE, NA; 而C++布尔值只有两个,true or false。如果将R的NA转化为C++中的布尔值,则会返回true。
CharacterVector 字符型向量
ExpressionVector vectors of expression types
RawVector vectors of type raw
IntegerMatrix 整型矩阵
NumericMatrix 数值型矩阵(元素的类型为double)
LogicalMatrix 逻辑型矩阵
CharacterMatrix 字符矩阵
List aka GenericVector 列表;lists;类似于R中列表,其元素可以使任何数据类型
DataFrame 数据框;data frames;在Rcpp内部,数据框其实是通过列表实现的
Function 函数型
Environment 环境型;可用于引用R环境中的函数、其他R包中的函数、操作R环境中的变量
RObject 可以被R识别的类型
注释:
某些R对象可以通过as<Some_RcppObject>(Some_RObject)转化为转化为Rcpp对象。例如:
在R中拟合一个线性模型(其为List),并将其传入C++函数中
>mod=lm(Y~X);
NumericVector resid = as<NumericVector>(mod["residuals"]);
NumericVector fitted = as<NumericVector>(mod["fitted.values"]);
可以通过as<some_STL_vector>(Some_RcppVector),将NumericVector转换为std::vector。例如:
std::vector<double> vec;
vec = as<std::vector<double>>(x);
在函数中,可以用wrap(),将std::vector转换为NumericVector。例如:
arma::vec long_vec(16,arma::fill::randn);
vector<double> long_vec2 = conv_to<vector<double>>::from(long_vec);
NumericVector output = wrap(long_vec2);
在函数返回时,可以使用wrap(),将C++ STL类型转化为R可识别类型。示例见后面输入和输出示例部分。
以上数据类型除了Environment之外(Function不确定),大多可直接作为函数返回值,并被自动转化为R对象。
算数和逻辑运算符号+, -, *, /, ++, --, pow(x,p), <, <=, >, >=, ==, !=。逻辑关系符号&&, ||, !。
3. 常用数据类型的建立
//1. Vector
NumericVector V1(n);//创立了一个长度为n的默认初始化的数值型向量V1。
NumericVector V2=NumericVector::create(1, 2, 3); //创立了一个数值型向量V2,并初始化使其含有三个数1,2,3。
LogicalVector V3=LogicalVector::create(true,false,R_NaN);//创立了一个逻辑型变量V3。如果将其转化为R Object,则其含有三个值TRUE, FALSE, NA。
//2. Matrix
NumericMatrix M1(nrow,ncol);//创立了一个nrow*ncol的默认初始化的数值型矩阵。
//3. Multidimensional Array
NumericVector out=NumericVector(Dimension(2,2,3));//创立了一个多维数组。然而我不知道有什么卵用。。
//4. List
NumericMatrix y1(2,2);
NumericVector y2(5);
List L=List::create(Named("y1")=y1,
Named("y2")=y2);
//5. DataFrame
NumericVector a=NumericVector::create(1,2,3);
CharacterVector b=CharacterVector::create("a","b","c");
std::vector<std::string> c(3);
c[0]="A";c[1]="B";c[2]="C";
DataFrame DF=DataFrame::create(Named("col1")=a,
Named("col2")=b,
Named("col3")=c);
4. 常用数据类型元素访问
元素访问 描述
[n] 对于向量类型或者列表,访问第n个元素。对于矩阵类型,首先把矩阵的下一列接到上一列之下,从而构成一个长列向量,并访问第n个元素。不同于R,n从0开始。
(i,j) 对于矩阵类型,访问第(i,j)个元素。不同于R,i和j从0开始。不同于向量,此处用圆括号。
List["name1"]/DataFrame["name2"] 访问List中名为name1的元素/访问DataFrame中,名为name2的列。
5. 成员函数
成员函数 描述
X.size() 返回X的长度;适用于向量或者矩阵,如果是矩阵,则先向量化
X.push_back(a) 将a添加进X的末尾;适用于向量
X.push_front(b) 将b添加进X的开头;适用于向量
X.ncol() 返回X的列数
X.nrow() 返回X的行数
6. 语法糖
6.1 算术和逻辑运算符
+, -, *, /, pow(x,p), <, <=, >, >=, ==, !=, !
以上运算符均可向量化。
6.2. 常用函数
is.na()
Produces a logical sugar expression of the same length. Each element of the result expression evaluates to TRUE if the corresponding input is a missing value, or FALSE otherwise.
seq_len()
seq_len( 10 ) will generate an integer vector from 1 to 10 (Note: not from 0 to 9), which is very useful in conjugation withsapply() and lapply().
pmin(a,b) and pmax(a,b)
a and b are two vectors. pmin()(or pmax()) compares the i <script type="math/tex" id="MathJax-Element-1">i</script>th elements of a and b and return the smaller (larger) one.
ifelse()
ifelse( x > y, x+y, x-y ) means if x>y is true, then do the addition; otherwise do the subtraction.
sapply()
sapply applies a C++ function to each element of the given expression to create a new expression. The type of the resulting expression is deduced by the compiler from the result type of the function.
The function can be a free C++ function such as the overload generated by the template function below:
template <typename T>
T square( const T& x){
return x * x ;
}
sapply( seq_len(10), square<int> ) ;
Alternatively, the function can be a functor whose type has a nested type called result_type
template <typename T>
struct square : std::unary_function<T,T> {
T operator()(const T& x){
return x * x ;
}
}
sapply( seq_len(10), square<int>() ) ;
lappy()
lapply is similar to sapply except that the result is allways an list expression (an expression of type VECSXP).
sign()
其他函数
数学函数: abs(), acos(), asin(), atan(), beta(), ceil(), ceiling(), choose(), cos(), cosh(), digamma(), exp(), expm1(), factorial(), floor(), gamma(), lbeta(), lchoose(), lfactorial(), lgamma(), log(), log10(), log1p(), pentagamma(), psigamma(), round(), signif(), sin(), sinh(), sqrt(), tan(), tanh(), tetragamma(), trigamma(), trunc(). 汇总函数: mean(), min(), max(), sum(), sd(), and (for vectors) var() 返回向量的汇总函数: cumsum(), diff(), pmin(), and pmax() 查找函数: match(), self_match(), which_max(), which_min() 重复值处理函数: duplicated(), unique()
7. STL
Rcpp可以使用C++的标准模板库STL中的数据结构和算法。Rcpp也可以使用Boost中的数据结构和算法。
7.1. 迭代器
此处仅仅以一个例子代替,详细参见C++ Primer,或者此处。
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
double sum3(NumericVector x) {
double total = 0;
NumericVector::iterator it;
for(it = x.begin(); it != x.end(); ++it) {
total += *it;
}
return total;
}
7.2. 算法
头文件<algorithm>中提供了许多的算法(可以和迭代器共用),具体可以参见此处。
For example, we could write a basic Rcpp version of findInterval() that takes two arguments a vector of values and a vector of breaks, and locates the bin that each x falls into.
#include <algorithm>
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
IntegerVector findInterval2(NumericVector x, NumericVector breaks) {
IntegerVector out(x.size());
NumericVector::iterator it, pos;
IntegerVector::iterator out_it;
for(it = x.begin(), out_it = out.begin(); it != x.end();
++it, ++out_it) {
pos = std::upper_bound(breaks.begin(), breaks.end(), *it);
*out_it = std::distance(breaks.begin(), pos);
}
return out;
}
7.3. 数据结构
STL所提供的数据结构也是可以使用的,Rcpp知道如何将STL的数据结构转换成R的数据结构,所以可以从函数中直接返回他们,而不需要自己进行转换。
具体请参考此处。
7.3.1. Vectors
详细信息请参见处此
创建
vector<int>, vector<bool>, vector<double>, vector<String>
元素访问
利用标准的[]符号访问元素
元素增加
利用.push_back()增加元素。
存储空间分配
如果事先知道向量长度,可用.reserve()分配足够的存储空间。
例子:
The following code implements run length encoding (rle()). It produces two vectors of output: a vector of values, and a vector lengths giving how many times each element is repeated. It works by looping through the input vector x comparing each value to the previous: if it's the same, then it increments the last value in lengths; if it's different, it adds the value to the end of values, and sets the corresponding length to 1.
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
List rleC(NumericVector x) {
std::vector<int> lengths;
std::vector<double> values;
// Initialise first value
int i = 0;
double prev = x[0];
values.push_back(prev);
lengths.push_back(1);
NumericVector::iterator it;
for(it = x.begin() + 1; it != x.end(); ++it) {
if (prev == *it) {
lengths[i]++;
} else {
values.push_back(*it);
lengths.push_back(1);
i++;
prev = *it;
}
}
return List::create(
_["lengths"] = lengths,
_["values"] = values
);
}
7.3.2. Sets
参见链接1,链接2和链接3。
STL中的集合std::set不允许元素重复,而std::multiset允许元素重复。集合对于检测重复和确定不重复的元素具有重要意义((like unique, duplicated, or in))。
Ordered set: std::set和std::multiset。
Unordered set: std::unordered_set
一般而言unordered set比较快,因为它们使用的是hash table而不是tree的方法。
unordered_set<int>, unordered_set<bool>, etc
7.3.3. Maps
与table()和match()关系密切。
Ordered map: std::map
Unordered map: std::unordered_map
Since maps have a value and a key, you need to specify both types when initialising a map:
map<double, int>, unordered_map<int, double>.
8. 与R环境的互动
通过EnvironmentRcpp可以获取当前R全局环境(Global Environment)中的变量和载入的函数,并可以对全局环境中的变量进行修改。我们也可以通过Environment获取其他R包中的函数,并在Rcpp中使用。
获取其他R包中的函数
Rcpp::Environment stats("package:stats");
Rcpp::Function rnorm = stats["rnorm"];
return rnorm(10, Rcpp::Named("sd", 100.0));
获取R全局环境中的变量并进行更改
假设R全局环境中有一个向量x=c(1,2,3),我们希望在Rcpp中改变它的值。
Rcpp::Environment global = Rcpp::Environment::global_env();//获取全局环境并赋值给Environment型变量global
Rcpp::NumericVector tmp = global["x"];//获取x
tmp=pow(tmp,2);//平方
global["x"]=tmp;//将新的值赋予到全局环境中的x
获取R全局环境中的载入的函数
假设全局环境中有R函数funR,其定义为:
x=c(1,2,3);
funR<-function(x){
return (-x);
}
并有R变量x=c(1,2,3)。我们希望在Rcpp中调用此函数并应用在向量x上。
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
NumericVector funC() {
Rcpp::Environment global =
Rcpp::Environment::global_env();
Rcpp::Function funRinC = global["funR"];
Rcpp::NumericVector tmp = global["x"];
return funRinC(tmp);
}
9. 用Rcpp创建R包
见此文
利用Rcpp和RcppArmadillo创建R包
10. 输入和输出示例
如何传递数组
如果要传递高维数组,可以将其存为向量,并附上维数信息。有两种方式:
通过.attr("dim")设置维数
NumericVector可以包含维数信息。数组可以用过NumericVector输出到R中。此NumericVector可以通过.attr(“dim”)设置其维数信息。
// Dimension最多设置三个维数
output.attr("dim") = Dimension(3,4,2);
// 可以给.attr(“dim”)赋予一个向量,则可以设置超过三个维数
NumericVector dim = NumericVector::create(2,2,2,2);
output.attr("dim") = dim;
示例:
// 返回一个3*3*2数组
RObject func(){
arma::vec long_vec(18,arma::fill::randn);
vector<double> long_vec2 = conv_to<vector<double>>::from(long_vec);
NumericVector output = wrap(long_vec2);
output.attr("dim")=Dimension(3,3,2);
return wrap(output);
}
// 返回一个2*2*2*2数组
// 注意con_to<>::from()
RObject func(){
arma::vec long_vec(16,arma::fill::randn);
vector<double> long_vec2 = conv_to<vector<double>>::from(long_vec);
NumericVector output = wrap(long_vec2);
NumericVector dim = NumericVector::create(2,2,2,2);
output.attr("dim")=dim;
return wrap(output);
}
另外建立一个向量存维数,在R中再通过.attr("dim")设置维数
函数返回一维STL vector
自动转化为R中的向量
vector<double> func(NumericVector x){
vector<double> vec;
vec = as<vector<double>>(x);
return vec;
}
NumericVector func(NumericVector x){
vector<double> vec;
vec = as<vector<double>>(x);
return wrap(vec);
}
RObject func(NumericVector x){
vector<double> vec;
vec = as<vector<double>>(x);
return wrap(vec);
}
函数返回二维STL vector
自动转化为R中的list,list中的每个元素是一个vector。
vector<vector<double>> func(NumericVector x) {
vector<vector<double>> mat;
for (int i=0;i!=3;++i){
mat.push_back(as<vector<double>>(x));
}
return mat;
}
RObject func(NumericVector x) {
vector<vector<double>> mat;
for (int i=0;i!=3;++i){
mat.push_back(as<vector<double> >(x));
}
return wrap(mat);
}
返回Armadillo matrix, Cube 或 field
自动转化为R中的matrix
NumericMatrix func(){
arma::mat A(3,4,arma::fill::randu);
return wrap(A);
}
arma::mat func(){
arma::mat A(3,4,arma::fill::randu);
return A;
}
自动转化为R中的三维array
arma::cube func(){
arma::cube A(3,4,5,arma::fill::randu);
return A;
}
RObject func(){
arma::cube A(3,4,5,arma::fill::randu);
return wrap(A);
}
自动转化为R list,每个元素存储一个R向量,但此向量有维数信息(通过.Internal(inspect())查询)。
RObject func() {
arma::cube A(3,4,2,arma::fill::randu);
arma::cube B(3,4,2,arma::fill::randu);
arma::field <arma::cube> F(2,1);
F(0)=A;
F(1)=B;
return wrap(F);
}
参考文献:
Eddelbuettel, D. (2013). Seamless R and C++ Integration with Rcpp. Springer Publishing Company, Incorporated. ·
Allaire, J.J. (2016). Rcpp Attributes.
Eddelbuettel, D. (2016). Rcpp syntactic sugar.
http://adv-r.had.co.nz/Rcpp.html
http://www.rcpp.org/
http://blog.csdn.net/a358463121
http://www.runoob.com/cplusplus/cpp-operators.html
如需引用,请注明出处。
大型站长资讯类网站! https://www.0370zz.cn